新东方网>哈尔滨新东方学校>泡泡少儿>正文

(数学)精选小学生数学文化

2017-02-14 15:34

来源:

作者:

数学一直都是小学生学习的重点,因此,精品学习网精心为大家提供了数学文化发现数学定理,希望对大家有所帮助。

相信很多人都会有这种印象:数学是一门深奥的科学,除了在学校和课本可以念到外,在实际生活中很少看到它,而且在日常生活中,除了加减乘除外,就很少用到它。

对于喜欢数学的人,他们在读到一些数学家的传记,或者关于他们的发现,往往会产生这样的想法:这些人真的很聪明,如果不是天才怎么会发现这些难得的定理或理论呢?

这些看法和印象并不全部正确。今天我想告诉你的就是如果有天才的话,你也是一个天才。只要你有了一些基础知识,你懂得一些研究的方法,也可以作一点研究,也会有新发现,数学并不是只有数学家才能研究的。

有生活的地方就有数学

人类靠着劳动的双手创造了财富,数学也和其他科学一样产生于实践。可以说有生活的地方就有数学。

你看木匠要做一个椭圆的桌面,拿了二根钉钉在木板上,然后用一条打结的绳子和粉笔,就可以在木板上画出一个漂亮的椭圆出来。

如果你时常邮寄信件,在贴邮票时你会发现一个这样的现象:任何大于7元的整数款项的邮费,往往可以用票面值3元和5元的邮票凑合起来。这里就有数学。

如果你是整天要拿着刀和镬铲在厨房里工作的厨子,看来数学是和你无缘。可是你有没有想到就在你的工作也会出现数学问题。奇怪吗?事实上是不奇怪的。

比方说,你现在准备煮“麻婆豆腐”,你把一大堆豆腐放在砧板上,如果你不想用手去动豆腐,而想一刀刀切下去把豆腐切出越多块越好。那么在最初一刀,你最多切出二块,第二刀你切出四块,第三刀你最多可以切出多少块呢?你切了第五刀最多能切出多少块呢?这里不是有数学问题吗?你会惊奇有一个公式可以算出第n刀得出的块数。

我们每天或多或少都会和钱打交道。你可能也会注意到这样的现象:任何一笔多于6元的整数款项可以用2元硬币及5元纸币来支付。

不是吗?7元可以用一张2元和一张5元的纸币来支付,8元可以用四张2元纸币,9元可以用二张2元纸币和一张5元纸币去支付。一般情形怎么样呢?

你说这不是很容易吗?如果钱数是偶数的话,我只要用若干张2元去应付就行了,如果是奇数的话,我只要先付一张5元钞票,剩下的是偶数款项,当然就可以用2元纸币去处理。是的,这里你就用到了整数的性质。

从这些例子你可以看到数学是在日常生活中是有用的,如果你细心的话,以后你会发现就在你工作的地方会有一些数学问题产生。

发现数学定理的秘诀

数学家是怎样发现数学定理呢?他们是否有一个秘诀?如果能知道那是多好啊!

是的,这里有一个秘诀,下面的一个真实故事就会告诉你秘诀是在哪里?

在中国湖南省的一个农村生产队,在1964年以前禾苗年年受到虫害,粮食老是不够,亩产最多是五百多斤。

那里的虫害最厉害的是一种叫蚁螟的虫,它们能使稻枯心,农民最初看到禾苗出现白线子才喷药。可是农药喷了,虫却没治好。有一个农民看到这种情形,他决定要想法子根治这种虫害,可是有人却认为他文化低,不可能做出这样的事来?但是他不理会这些意见。当第一代的螟蛾生出后,他就守在田边观看,看蛾子如何产卵,发现卵块的地方就插标记,记下产卵日期,看它什么时候孵化。不管刮风下雨,日夜不离田边,终于揭开了秘密。掌握到了这种虫的生长规律,于是就有法子消灭它。以后也控制了其它虫害,粮食亩产到目前增至一千二百多斤。

许多人承认在科学上的发现和发明:如物理上的落体定律,化学上的合成胰岛素,链霉素,在生物上的发现遗传规律,在医学上用针灸医治聋哑病症者,都是需要依靠实验和观察。我说数学上的发现也是靠观察得来的,读者不是会觉得奇怪吗?

数学是研究一些数、形、集合、关系和运算的性质和变化的规律,人们是怎样知道这些性质和规律呢?

是不是像一些宣传宗教的小册子讲,连那大名鼎鼎的17世纪的英国科学家牛顿,也是因为他很虔诚,为上帝所宠爱,让一个苹果在他头上掉下,启发他发现物理上的《万有引力定律》?人的活动是上帝在操纵吗?

让我们看一看 18世纪的一个大数学家欧拉(Leonard Euler17071783)的一些意见吧!

欧拉在他的一篇:《纯数学的观察问题》的文章里写道:“许多我们知道的整数的性质是靠观察得来,这发现早已被它的严格证明所证实。还有很多整数的性质我们是很熟悉的,可是我们还不能证明;只有观察引导我们对它们的认识。因此我们看到在数论——它还不是一个完整的理论中,我们可以寄厚望于观察:它能连续引导我们新的性质,我们较后尝试证明。那类靠观察而取得的知识还没有被证明,必需小心的和真理区别,像我们通常所说它是靠归纳所得的。我们看过单纯的归纳会引起错误。因此我们要非常小心,不要把那一类我们靠观察而由归纳得来的整数的性质当为正确无误。事实上,我们要利用这发现为机会,去研究它的性质,去证明它或反证它,这两方面我们都会学到有用的东西。”(见《欧拉全集》第二册)

欧拉是瑞士人,一生大部份时间是在俄国和德国的科学院度过,对这两个国家特别是俄国的数学发展有很大的贡献。他是最多产的数学家,他在生之日已出版和发表五百多本书和文章,死后还留下二百多篇文章未发表,以及一大堆不太完整的手稿。

他的工作涉及的范围很广,单是数学就包含了当时的数学的差不多所有的分枝,在物理、天文、水利等等一些较有实用的科学他也作出过贡献。

1909年开始瑞士的自然科学会,准备出版他的全集,他的全集到现在还没有出完,他留在列宁格勒(现改名为圣彼得堡)的一大堆手稿,因为内容太多,到现在还要花许多时间和气力去整理。

为什么欧拉能作出这样多的发现呢?在那篇《纯数学的观察问题》的文章里,他已告诉了你一个秘诀,就是:“依靠观察得来的。”事实上欧拉也是一个善于观察的数学家。

发现的工具是归纳和类比

18世纪的法国有一个农民家庭出身的数学家和天文学家——拉普拉斯(PierreSimon de laplace 17491827)。拉普拉斯是现代概率论的奠基者之一。学物理的人对他很熟。

他有一个很好的品德,就是对于年青一代的数学家当作自己的孩子,帮助他们和鼓励他们。有一些人的发现事实上是他早在几十年前就得到了,但他也是把这发现的荣誉让给年青人而不是自己占有、或者像一些所谓“专家”对这些新生的力量,在妒忌之余,加以阻挠打击。

拉普拉斯在关于概率论的哲学问题的一篇文章里曾经指出:“在数学这门科学里,我们发现真理的主要工具是归纳和类比(induction and analogy)。”这里他指出了发现数学定理的一个方法。

新东方哈尔滨学校官方微信:新东方哈尔滨学校(微信号:xdfhebxx

最新活动公告、课程优惠、考试资讯,请扫一扫二维码,关注我们的官方微信!

焦点推荐

版权及免责声明

凡本网注明"稿件来源:新东方"的所有文字、图片和音视频稿件,版权均属新东方教育科技集团(含本网和新东方网) 所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他任何方式复制、发表。已经本网协议授权的媒体、网站,在下载使用时必须注明"稿件来源:新东方",违者本网将依法追究法律责任。

本网未注明"稿件来源:新东方"的文/图等稿件均为转载稿,本网转载仅基于传递更多信息之目的,并不意味着赞同转载稿的观点或证实其内容的真实性。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。如擅自篡改为"稿件来源:新东方",本网将依法追究法律责任。

如本网转载稿涉及版权等问题,请作者见稿后在两周内速来电与新东方网联系,电话:010-60908555。